Biotransformation of chlorpromazine and methdilazine by Cunninghamella elegans.

نویسندگان

  • D Zhang
  • J P Freeman
  • J B Sutherland
  • A E Walker
  • Y Yang
  • C E Cerniglia
چکیده

When tested as a microbial model for mammalian drug metabolism, the filamentous fungus Cunninghamella elegans metabolized chlorpromazine and methdilazine within 72 h. The metabolites were extracted by chloroform, separated by high-performance liquid chromatography, and characterized by proton nuclear magnetic resonance, mass, and UV spectroscopic analyses. The major metabolites of chlorpromazine were chlorpromazine sulfoxide (36%), N-desmethylchlorpromazine (11%), N-desmethyl-7-hydroxychlorpromazine (6%), 7-hydroxychlorpromazine sulfoxide (36%), N-hydroxychlorpromazine (11%), 7-hydroxychlorpromazine sulfoxide (5%), and chlorpromazine N-oxide (2%), all of which have been found in animal studies. The major metabolites of methdilazine were 3-hydroxymethdilazine (3%). (18)O(2) labeling experiments indicated that the oxygen atoms in methdilazine sulfoxide, methdilazine N-oxide, and 3-hydroxymethdilazine were all derived from molecular oxygen. The production of methdilazine sulfoxide and 3-hydroxymethdilazine was inhibited by the cytochrome P-450 inhibitors metyrapone and proadifen. An enzyme activity for the sulfoxidation of methdilazine was found in microsomal preparations of C. elegans. These experiments suggest that the sulfoxidation and hydroxylation of methdilazine and chlorpromazine by C. elegans are catalyzed by cytochrome P-450.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Data on individual metabolites of synthetic cannabinoids JWH-018, JWH-073 and AM2201 by Cunninghamella elegans

Synthetic cannabinoids JWH-018, JWH-073 and AM2201 were metabolised by the fungus Cunninghamella elegans. In this article, data on individual metabolites of their retention times, mass accuracies, major product ions and structures indicated by product ions are presented. The data in this article is related to "Biotransformation of synthetic cannabinoids JWH-018, JWH-073 and AM2201 by Cunningham...

متن کامل

Biotransformation of Albendazole by Cunninghamella blakesleeana:Influence of Incubation Time, Media, Vitamins and Solvents

The present investigation was aimed at studying the effect of incubation period, media, vitamins and solvents on biotransformation of albendazole by Cunninghamella blakesleeana. The transformation was evaluated and identified by high performance liquid chromatography (HPLC) and the structures of the transformed products were assigned by liquid chromatography-tandem mass spectrometry (LC/MS/MS) ...

متن کامل

Regiospecific synthesis of isoapocodeine from 10,11-dimethoxyaporphine by using Cunninghamella elegans.

A preparative-scale regiospecific conversion of 10,11-dimethoxyaporphine to isoapocodeine was conducted with Cunninghamella elegans ATCC 9245. This biotransformation proceeded quantitatively in suspensions and was pH dependent. The influence of antioxidants on the conversion was studied. Attempts to preserve the activity of isolated C. elegans cells by a number of methods were unsuccessful.

متن کامل

Biotransformation of fluorene by the fungus Cunninghamella elegans.

The metabolism of fluorene, a tricyclic aromatic hydrocarbon, by Cunninghamella elegans ATCC 36112 was investigated. Approximately 69% of the [9-14C]fluorene added to cultures was metabolized within 120 h. The major ethyl acetate-soluble metabolites were 9-fluorenone (62%), 9-fluorenol, and 2-hydroxy-9-fluorenone (together, 7.0%). Similarly to bacteria, C. elegans oxidized fluorene at the C-9 p...

متن کامل

Cunninghamella as a Microbiological Model for Metabolism of Histamine H3 Receptor Antagonist 1-[3-(4-tert-Butylphenoxy)propyl]piperidine

The aim of the study was to analyze the ability of the microorganism Cunninghamella to carry out the biotransformation of 1-[3-(4-tert-butylphenoxy)propyl]piperidine (DL76) and to compare the obtained results with in silico models. Biotransformation was carried out by three strains of filamentous fungus: Cunninghamella echinulata, Cunninghamella blakesleeana, and Cunninghamella elegans. Most pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 62 3  شماره 

صفحات  -

تاریخ انتشار 1996